

Welcome to the NEAT documentation!

Articles

	Tutorial

	Optional arguments

	Properties

	Architecture

API Reference

	Callbacks

	Error codes

	neat_init_ctx

	neat_free_ctx

	neat_new_flow

	neat_set_property

	neat_get_property

	neat_open

	neat_accept

	neat_read

	neat_write

	neat_shutdown

	neat_close

	neat_abort

	neat_set_operations

	neat_change_timeout

	neat_set_primary_dest

	neat_secure_identity

	neat_set_checksum_coverage

	neat_set_qos

	neat_get_qos

	neat_set_ecn

	neat_start_event_loop

	neat_stop_event_loop

	neat_get_backend_fd

	neat_get_backend_timeout

	neat_get_event_loop

	neat_get_stats

	neat_getlpaddrs

	neat_log_level

	neat_log_file

Internal

	Coding Style

Welcome to the NEAT tutorial

What is NEAT?

NEAT is a library for networked applications, intended to replace
existing socket APIs with a simpler, more flexible API. Additionally, NEAT
enables endpoints to make better decisions as to how to utilize the available
network resources and adapts based on the current condition of the network.

With NEAT, applications are able to specify the service they want from the
transport layer. NEAT will determine which of the available protocols fit the
requirements of the application and tune all the relevant parameters to ensure
that the application gets the desired service from the transport layer, based
on knowledge about the current state of the network when this information is
available.

NEAT enables applications to be written in a protocol-agnostic way, thus
allowing applications to be future-proof, leveraging new protocols as they
become available, with minimal to no change. Further, NEAT will try to connect
with different protocols if possible, making it able to gracefully fall back to
another protocol if it turns out that the most optimal protocol is unavailable,
for example, because of a middlebox such as a firewall. A connection in the NEAT
API will only fail if all protocols satisfying the requirements of the
application are unable to connect, or if no available protocol can satisfy the
requirements of the application.

Most operating systems support the same protocols. However, the same protocol
may often have a slightly different API on different operating systems. NEAT
provides the same API on all supported operating systems, which is currently
Linux, FreeBSD, OpenBSD, NetBSD, and OS X. The availability of a protocol
depends on whether the protocol is supported by the OS or if NEAT is compiled
with support for a user-space stack that implements the protocol.

Contexts and flows

The most important concept in the NEAT API is that of the flow. A flow is
similar to a socket in the traditional Berkely Socket API. It is a
bidirectional link used to communicate between two applications, on which data
may be written to or read from. Further, just like a socket, a flow uses some
transport layer protocol to communicate.

However, one important difference is that a flow is not as strictly tied to the
underlying transport protocol in the same way a socket is. In fact, a flow may
be created without even specifying which transport protocol to use. This is not
possible with a socket.

The same applies to modifying options on sockets. Setting the same kind of
option on two sockets with different protocols in the traditional socket API
requires setsockopt calls with different protocol IDs, option names, and
sometimes even values with different units. The setsockopt calls also vary
depending on what system you are on. This is not the case with NEAT. As long as
the desired option is available for the protocol in use, the API for setting
that option is the same for all protocols, and on all operating systems
supported by NEAT.

A context is a common environment for multiple flows. Along with flows, it
contains several services that are used by the flows internally in NEAT, such
as a DNS resolver and a Happy Eyeballs implementation. Flows within a context
are polled together. A flow may only belong to the context in which it is
created, and it cannot be transferred to a different context. Most applications
need only one context.

Properties

Different types of applications have different requirements and desires to the
services provided by the transport layer. An application for real-time
communication may require the communication to have properties such as low
latency, high bandwidth, quality of service, and have less strict requirements
with regards to reliable delivery. Losing a packet or bit errors may be less
critical to these applications. A web browser, on the other hand, might require
communication that is (partially) ordered and error-free. A BitTorrent
application might only require the ability to send packets to some destination
with a minimum amount of effort, and not at the expense of other applications
with stricter bandwidth requirements.

With the traditional socket API, the application requirements dictate
the choice of which protocol to use. With NEAT, this is not the case. NEAT
enables applications to specify the properties of the communication instead of
specifying which protocol to use. Some properties may be required; other
properties may be desired, but not mandatory. Based on the properties, NEAT
will determine which protocols can support the requirements of the application
and the options to set for each protocol. It will try to establish a connection
by trying each of them until one connection succeeds, known as Happy
Eyeballing.

The ability to specify properties instead of protocols allows applications to
take advantage of available protocols where possible. By Happy Eyeballing, NEAT
ensures that applications are able to cope with different network
configurations, and gracefully fall back to another protocol if necessary
should the most desirable protocol not be available for whatever reason.

Asynchronous API

The NEAT API is asynchronous and non-blocking. Once the execution is
transferred to NEAT, it will poll the sockets internally, and, when an event
happens, execute the appropriate callback in the application. This creates a
more natural way of programming communicating applications than with the
traditional socket API.

The three most important callbacks in the NEAT API are on_connected,
on_readable and on_writable, which may be set per flow. The on_connected
callback will be executed once the flow has connected to a remote endpoint, or
a flow has connected to a server listening for incoming connections. The
on_writable and on_readable callbacks are executed once data may be written
to or read from the flow without blocking.

A minimal server

To get started using the NEAT API, we will write a small server that will send
Hello, this is NEAT! to any client that connects to it. Later, we will write a
similar client, before modifying this server so that it works with the client.

We can summarize the functionality as follows:

	When a client connects, start writing when the flow is writable

	When a flow is writable, write Hello, this is NEAT! to it.

	When the flow has finished writing, close it.

Pay close attention to how easily this natural description can be implemented
using the NEAT API.

Here are the includes that should be put on top of the file:

#include <neat.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

We will start writing the main function of our server. The first thing we need
to do is to declare a few variables:

 struct neat_ctx *ctx;
 struct neat_flow *flow;
 struct neat_flow_operations ops;

And initialize them:

 ctx = neat_init_ctx();
 if (!ctx) {
 fprintf(stderr, "neat_init_ctx failed\n");
 return EXIT_FAILURE;

We are already familiar with the flow and the context. neat_init_ctx is used
to initialize the context, and neat_new_flow creates a new flow withing the
context. The neat_flow_operations struct is used to tell NEAT what to do
when certain events occur. We will use that next to tell which function we
want NEAT to call when a client connects:

 }

 flow = neat_new_flow(ctx);
 if (!flow) {

The function on_connected has not been defined yet, we will do that later.
Now that we have told NEAT what to do with a connecting client, we are ready
to accept incoming connections.

 fprintf(stderr, "neat_new_flow failed\n");
 return EXIT_FAILURE;
 }

 memset(&ops, 0, sizeof(ops));

This will instruct NEAT to start listening to incoming connections on port 5000.
The flow passed to neat_accept is cloned for each accepted connection. The
last two parameters are used for optional arguments. This example does not use
them.

The last function call we will do in main will be the one that starts the
show:

 ops.on_readable = on_readable;

When this function is called, NEAT will start doing work behind the scenes.
When called with the NEAT_RUN_DEFAULT parameter, this function will not
return until all flows have closed and all events have been handled. It is
also possible to run NEAT without having NEAT capture the main loop. Our final
main function looks like this:

int
main(int argc, char *argv[])
{
 struct neat_ctx *ctx;
 struct neat_flow *flow;
 struct neat_flow_operations ops;

 ctx = neat_init_ctx();
 if (!ctx) {
 fprintf(stderr, "neat_init_ctx failed\n");
 return EXIT_FAILURE;
 }

 flow = neat_new_flow(ctx);
 if (!flow) {
 fprintf(stderr, "neat_new_flow failed\n");
 return EXIT_FAILURE;
 }

 memset(&ops, 0, sizeof(ops));

 ops.on_readable = on_readable;
 ops.on_connected = on_connected;
 neat_set_operations(ctx, flow, &ops);

We have now filled in the main function of our server application. It is time
to start working on the callbacks that NEAT will use. The first callback we
need is on_connected.

static neat_error_code
on_connected(struct neat_flow_operations *opCB)

From the functional description above, we know that we need to write to
connecting clients when this becomes possible. The callback contains a
parameter that is a pointer to a neat_flow_operations struct, which we can
use to update the active callbacks of the flow. We set the on_writable
callback so that we can start writing when the flow becomes writable:

 opCB->on_writable = on_writable;

It is also good practice to set the on_all_written callback when setting the
on_writable callback:

 opCB->on_all_written = on_all_written;

The change is applied by calling neat_set_operations, just as in the main function:

 neat_set_operations(opCB->ctx, opCB->flow, opCB);

Next, we write the on_writable callback:

on_writable(struct neat_flow_operations *opCB)
{

Here, we call the function that will send our message:

 neat_write(opCB->ctx, opCB->flow, message, 20, NULL, 0);
 opCB->on_writable = NULL;
 return NEAT_OK;

Here we specify the data to send and the length of the data.
As with the neat_accept function, neat_write takes optional parameters.
We do not need to set any optional parameters for this call either, so again we
pass NULL and 0.

The final callback we need to implement is the on_all_written callback:

static neat_error_code
on_all_written(struct neat_flow_operations *opCB)

Here, we call neat_close to close the flow:

 neat_close(opCB->ctx, opCB->flow);

This is the final piece of our server. You may now compile and run the server.
You can use the tool socat to test it. The following output should be observed:

$ socat STDIO TCP:localhost:5000
Hello, this is NEAT!
$ socat STDIO SCTP:localhost:5000
Hello, this is NEAT!

You may find the complete source for the server here [https://github.com/NEAT-project/neat/blob/master/examples/minimal_server.c].

A minimal client

Next, we want to implement a client that will send the message "Hi!" after
connecting to a server, and then receive a reply from the server. A fair amount
of the code will be similar to the server we wrote above, so you may make a
copy of the code for the server and use that as a starting point for the client.

We will make two additions and one change to the main function. First, since we
are connecting to a server, we change the neat_accept call to neat_open instead:

 }

 flow = neat_new_flow(ctx);
 if (!flow) {

Next, we will specify a few properties for the flow:

static char *properties = "{\n\
 \"transport\": [\n\
 {\n\
 \"value\": \"SCTP\",\n\
 \"precedence\": 1\n\
 },\n\
 {\n\
 \"value\": \"TCP\",\n\
 \"precedence\": 1\n\
 }\n\
]\n\
}";

These properties will tell NEAT that it can select either SCTP or TCP as the
transport protocol. The properties are applied with neat_set_properties, which
may be done at any point between neat_new_flow and neat_open.

Finally, we add neat_free_ctx after neat_start_event_loop, so that NEAT may
free any allocated resources and exit gracefully. The complete main function
of the client will look like this:

int
main(int argc, char *argv[])
{
 struct neat_ctx *ctx;
 struct neat_flow *flow;
 struct neat_flow_operations ops;

 ctx = neat_init_ctx();
 if (!ctx) {
 fprintf(stderr, "neat_init_ctx failed\n");
 return EXIT_FAILURE;
 }

 flow = neat_new_flow(ctx);
 if (!flow) {
 fprintf(stderr, "neat_new_flow failed\n");
 return EXIT_FAILURE;
 }

 memset(&ops, 0, sizeof(ops));

 ops.on_connected = on_connected;
 ops.on_close = on_close;
 neat_set_operations(ctx, flow, &ops);

 if (neat_set_property(ctx, flow, properties) != NEAT_OK) {
 fprintf(stderr, "neat_set_property failed\n");
 return EXIT_FAILURE;

Leave the on_connected callback similar to the server.

We change the on_writable callback to send "Hi!" instead:

static neat_error_code
on_writable(struct neat_flow_operations *ops)
{
 const unsigned char message[] = "Hi!";
 neat_write(ops->ctx, ops->flow, message, 3, NULL, 0);
 return NEAT_OK;
}

The on_all_written callback should not close the flow, but instead stop
writing and set the on_readable callback:

static neat_error_code
on_all_written(struct neat_flow_operations *ops)
{
 ops->on_readable = on_readable;
 ops->on_writable = NULL;
 neat_set_operations(ops->ctx, ops->flow, ops);
 return NEAT_OK;
}

Finally, we will write an on_readable callback for the client. We allocate
some space on the stack to store the received data, and use a variable to store
the length of the received message. If the neat_read call returns successfully,
we print the message. Finally, we stop the internal event loop in NEAT, which
will eventually cause the call to neat_start_event_loop in the main function
to return. The on_readable callback should look like this:

static neat_error_code
on_readable(struct neat_flow_operations *ops)
{
 uint32_t bytes_read = 0;
 unsigned char buffer[32];

 if (neat_read(ops->ctx, ops->flow, buffer, 31, &bytes_read, NULL, 0) == NEAT_OK) {
 buffer[bytes_read] = 0;
 fprintf(stdout, "Read %u bytes:\n%s", bytes_read, buffer);
 }

 neat_close(ops->ctx, ops->flow);
 return NEAT_OK;
}

And there we have our finished client! You can test it with socat:

$ socat TCP-LISTEN:5000 STDIO

When you run the client, you should see Hi! show up in the output from socat.
You can type a short message followed by pressing return, and it should show
up in the output on the client.

You may find the complete source for the client here [https://github.com/NEAT-project/neat/blob/master/examples/minimal_client.c].

Tying the client and server together

A few small changes are required on the server to make the client and server
work together. In the on_connected callback, the server should set the
on_readable callback instead of the on_writable callback. An on_readable
callback should be added and read the incoming message from the client, and set
the on_writable callback.

The callbacks for the updated server is as follows:

static neat_error_code
on_readable(struct neat_flow_operations *ops)
{
 uint32_t bytes_read = 0;
 unsigned char buffer[32];

 if (neat_read(ops->ctx, ops->flow, buffer, 31, &bytes_read, NULL, 0) == NEAT_OK) {
 buffer[bytes_read] = 0;
 fprintf(stdout, "Read %u bytes:\n%s\n", bytes_read, buffer);
 }

 ops->on_readable = NULL;
 ops->on_writable = on_writable;
 ops->on_all_written = on_all_written;
 neat_set_operations(ops->ctx, ops->flow, ops);

 return NEAT_OK;
}

static neat_error_code
on_writable(struct neat_flow_operations *ops)
{
 const unsigned char message[] = "Hello, this is NEAT!";
 neat_write(ops->ctx, ops->flow, message, 20, NULL, 0);

 ops->on_writable = NULL;
 ops->on_readable = NULL;
 ops->on_all_written = on_all_written;
 neat_set_operations(ops->ctx, ops->flow, ops);

 return NEAT_OK;
}

static neat_error_code
on_all_written(struct neat_flow_operations *ops)
{
 ops->on_readable = NULL;
 ops->on_writable = NULL;
 ops->on_all_written = NULL;
 neat_set_operations(ops->ctx, ops->flow, ops);

 neat_close(ops->ctx, ops->flow);

 return NEAT_OK;
}

static neat_error_code
on_connected(struct neat_flow_operations *ops)
{
 ops->on_readable = on_readable;
 neat_set_operations(ops->ctx, ops->flow, ops);

 return NEAT_OK;
}

You may find the complete source for the updated server here [https://github.com/NEAT-project/neat/blob/master/examples/minimal_server2.c].
A minimal CMakeLists.txt for cmake can be found here [https://gist.github.com/bozakov/26fbaabb2d94c25af69bf73977558f9e].

Optional arguments

Some of the functions in the NEAT API, such as neat_open, neat_read and
neat_write, take optional arguments. These are sometimes used to pass
optional arguments to functions, and sometimes used to return additional
values from the function. Optional arguments are passed as an array of the
struct neat_tlv and an integer specifying the length of this array.
neat_tlv is defined as follows:

struct neat_tlv {
 neat_tlv_tag tag;
 neat_tlv_type type;

 union {
 int integer;
 char *string;
 float real;
 } value;
};

An optional argument takes the form of a tag name, a type, and a value of
either a string, integer or a floating point number. The tag specifies which
optional argument the value belongs to, and the type asserts the type of the
value passed as this argument. An error will be raised of the type is
different than what the function expects.

You may either work with this struct directly, or you may use the preprocessor
macros explained later in this document.

Specifying no optional arguments

To specify no optional arguments, simply pass NULL as the optargs parameter
and 0 as the opt_count parameter of the function.

Optional argument macros

	NEAT_OPTARGS_DECLARE(max) - Declare the necessary variables to use the
rest of these macros. Allocates (on the stack) an array of length max and
an integer for storing the number of optional arguments specified.
NEAT_OPTARGS_MAX may be used as the default array size.

	NEAT_OPTARGS_INIT() - Initializes the variables declared by
NEAT_OPTARGS_DECLARE. May also be used to reset the (number of) optional
arguments back to 0.

	NEAT_OPTARG_INT(tag,value) - Specify the tag and the value of an
optional argument that takes an integer.

	NEAT_OPTARG_FLOAT(tag,value) - Specify the tag and the value of an
optional argument that takes a floating point number.

	NEAT_OPTARG_STRING(tag,value) - Specify the tag and the value of an
optional argument that takes a string.

	NEAT_OPTARGS - Represents the array of optional arguments. Specify this
macro as the optarg parameter.

	NEAT_OPTARG_COUNT - Stores the number of the optional arguments
specified so far with NEAT_OPTARG_INT, NEAT_OPTARG_FLOAT or
NEAT_OPTARG_STRING. This count is reset by NEAT_OPTARGS_INIT(). Specify
this macro as the opt_count argument.

Optional argument tags

	NEAT_TAG_STREAM_ID (integer) - Specifies the ID of the stream which the data should
be written to, or which stream the data was read from.

	NEAT_TAG_STREAM_COUNT (integer) - Specifies the number of stream to create. Only used
with protocols that support multiple streams.

	NEAT_TAG_FLOW_GROUP (int) - Specifies the flow group this flow belongs to.

	NEAT_TAG_PRIORITY (float) - Specifies the priority of this flow relative to other
flows in the flow group.

	NEAT_TAG_CC_ALGORITHM (string) - Speficies the name of the (TCP) congestion control
algorithm that will be used by this flow. A system default will be used if the specified
algorithm is not available.

Currently unused tags:

	NEAT_TAG_LOCAL_NAME

	NEAT_TAG_SERVICE_NAME

	NEAT_TAG_CONTEXT

	NEAT_TAG_PARTIAL_RELIABILITY_METHOD

	NEAT_TAG_PARTIAL_RELIABILITY_VALUE

	NEAT_TAG_PARTIAL_MESSAGE_RECEIVED

	NEAT_TAG_PARTIAL_SEQNUM

	NEAT_TAG_UNORDERED

	NEAT_TAG_UNORDERED_SEQNUM

	NEAT_TAG_DESTINATION_IP_ADDRESS

Examples

 NEAT_OPTARGS_DECLARE(NEAT_OPTARGS_MAX);
 NEAT_OPTARGS_INIT();
 NEAT_OPTARG_INT(NEAT_TAG_STREAM_COUNT, 5);
 neat_open(ctx, flow, "127.0.0.1", 8000, NEAT_OPTARGS, NEAT_OPTARGS_COUNT);

Properties

A property in NEAT may either express a requirement or it may express a desire
from the application with regards to the service provided by the transport
layer.

Properties are represented as JSON objects. A set of properties may be contained
within one JSON object. Below is an example of a JSON object with a single property:

{
 "property_name": {
 value: "property_value",
 precedence: 1
 }
}

Note that all examples of properties will be specified inside a JSON object.

Properties have a name, a value, and a precedence. A string is always used for
the name of a property. The value of a property may be either a boolean, a
string, an integer, a floating point number, an array, or an interval. Each
property expects only one specific type.

The properties are sent to the Policy Manager (if present), which will return a
list containing a list of candidates, which is ordered by how good the
candidate matches the request from the application. Each candidate specifies a
given setting for each property. NEAT will use the properties specified in each
candidate when trying to set up a new connection.

Some properties are set by NEAT based on parameters to function calls. Other
properties must be set manually with the neat_set_property function.

Application property reference

These are properties that may be set by the application.

transport

Type: Array

Specifies an array of transport protocols that may be used. An application may
specify either one protocol with precedence 2, or multiple protocols with
precedence 1.

Note: May not be queried with neat_get_property before execution of the
on_connected callback. When querying this property, the returned value is a
string describing the actual transport in use.

Note: Applications should avoid specifying the protocol(s) to use directly,
and instead rely on the Policy Manager to make a decision on what protocol(s)
to use based on other properties. The transport property should only be used
for systems without a Policy Manager, or if the choice of transport protocol is
strictly mandated by the application protocol.

Example 1: Multiple protocols

{
 "transport":
 {
 "value": ["SCTP", "TCP"]
 "precedence": 1
 }
}

Example 2: One protocol

{
 "transport":
 {
 "value": "UDP",
 "precedence": 2
 }
}

Available protocols:

	SCTP

	SCTP/UDP (SCTP tunneled over UDP)

	TCP

	UDP

	UDP-Lite

security

Type: Boolean

Specifies whether the connection should be encrypted or not. With precedence 2,
NEAT will only report the connection as established if it was able to connect
and the (D)TLS handshake succeeds. With precedence 1, NEAT may still attempt to
establish an unencrypted connection.

Inferred properties

These are properties that are inferred during connection setup and subsequently
sent to the Policy Manager. Applications should not set these directly.

interfaces

Type: Array

Specifies a list of available interfaces that may be used for connections. The
Policy Manager may not use all interfaces in this list.

This property is inferred during the neat_open call. Do not set this property
manually.

domain_name

Type: String

Specifies the name of the remote endpoint to connect to with the neat_open call.

This property is inferred from the name parameter of neat_open call. Do not
set this property manually.

port

Type: Integer

This property is inferred from the neat_open and neat_accept calls. Do not
set this property manually.

Architecture

 Your browser does not support SVG

Application

The application in NEAT terminology is the software using the transport layer to
communicate with a remote endpoint.

NEAT API

The NEAT API is the public interface which applications may use to implement
communication over the transport layer.

NEAT Core

The NEAT Core ties all the various components of the NEAT framework together,
and handles communication over the transport layer once the connection has been
established.

Connection setup in NEAT

The following is a description of how a connection is set up in NEAT:

	The application specifies properties of the communication with neat_set_property.

	The application calls neat_open in the NEAT API.

	The NEAT Core sends application properties and inferred properties to the Policy Manager.

	The Policy Manager replies with an initial set of candidates eligible for name resolution (e.g. DNS lookup).

	The NEAT Core initiates one or more name resolution requests to the Name Resolver.

	The Name Resolver replies with resolved addresses, and the NEAT Core inserts these into each candidate.

	The NEAT Core makes a second call to the Policy Manager.

	The Policy Manager returns a list of suitable candidates that the NEAT Core should use to establish a connection.
A candidate consists of the following:

	Transport protocol

	Interface

	Port

	Local address

	Remote address

	Priority

	Application properties

If one or more of the application properties are specified as desired (precedence 1), multiple
candidates may be generated with different settings for that property.

	The NEAT Core generates a list of Happy Eyeball candidates and initiates the Happy Eyeballs algorithm.

	The Happy Eyeballs module tries to connect each candidate in turn.
The delay between each candidate is determined from the priority of the candidate.
A lower value implies a higher priority.
The connection may be handled by either the operating system using its own
implementation of the protocol, or using a userspace implementation of the protocol.

	The first connection that connects successfully and meets all required properties
set by the application is returned to the NEAT Core.

	NEAT starts polling the socket internally, and reports back to the application
that a connection has been established using the on_connected callback if
it has been specified using neat_set_operations.

	NEAT will report that the flow is readable or writable if the respective on_readable
or on_writable callbacks have been specified with neat_set_operations.

	The application closes the flow with neat_close.

Callbacks

Callbacks are used in NEAT to signal events to the application. They are used
to inform the application when a flow is readable, writable, or an error has
occurred.

Most callbacks have the following syntax:

neat_error_code
on_event_name(neat_flow_operations *ops)
{
 return NEAT_OK; // or some error code
}

The struct neat_flow_operations is defined as follows:

struct neat_flow_operations
{
 void *userData;

 neat_error_code status;
 int stream_id;
 struct neat_ctx *ctx;
 struct neat_flow *flow;

 neat_flow_operations_fx on_connected;
 neat_flow_operations_fx on_error;
 neat_flow_operations_fx on_readable;
 neat_flow_operations_fx on_writable;
 neat_flow_operations_fx on_all_written;
 neat_flow_operations_fx on_network_status_changed;
 neat_flow_operations_fx on_aborted;
 neat_flow_operations_fx on_timeout;
 neat_flow_operations_fx on_close;
 neat_cb_send_failure_t on_send_failure;
 neat_cb_flow_slowdown_t on_slowdown;
 neat_cb_flow_rate_hint_t on_rate_hint;
};

	userData: Applications may freely store a pointer in this field.

	status: Reports any errors associated with the flow.

	stream_id: For flows that use explicit multistreaming. Specifies
which stream the event is related to, if any.

	ctx: Pointer to the context the flow belongs to.

	flow: Pointer to the flow on which the event happened.

Callbacks are set by assigning the function pointer to the struct passed to the
callback and then calling neat_set_operations. A NULL pointer may be used to
indicate that the callback should no longer be called.

Example callback flow

For most applications it will be sufficient to use the following callback flow:

 +
 |
 |
 |
 +--------v---------+
 | on_connected() |
 +--------+---------+
 |
 +------------+-------------+
 | |
+--------v---------+ +--------v---------+
| on_readable() | | on_writable() | <------+
+------------------+ +--------+---------+ |
 | |
 | |
 | |
 +--------v---------+ |
 | on_all_written() | ------+
 +------------------+

See the tutorial for more details.

Callback reference

on_connected

Called whenever an outgoing connection has been established with neat_open,
or an incoming connection has been established with neat_accept.

on_error

Called whenever an error occurs when processing the flow. Errors are considered
critical.

on_readable

Called whenever the flow can be read from without blocking. NEAT does not permit
blocking reads.

on_writable

Called whenever the flow can be written to without blocking. NEAT does not
permit blocking writes.

on_all_written

Called when all previous data sent with neat_write has been completely
written. Does not signal that the flow is writable. Applications may use this
callback to re-enable the on_writable callback.

on_network_status_changed

Inform application that something has happened in the network. This also
includes flow endpoints going up, which will subsequently trigger
on_connected if that callback is set.

Only available when using SCTP.

on_aborted

Called when the remote end aborts the flow. Available for flows using TCP or SCTP.

on_timeout

Called if sent data is not acknowledged within the time specified with
neat_change_timeout.

Currently only available for TCP on Linux.

on_close

Called when the graceful connection shutdown has completed.

Only available when using SCTP or TCP. Note that when using TCP, this callback
is called when the close() system call is made, as TCP implementations currently
does not provide any more accurate way of signalling this.

on_send_failure

Defined as:

void
on_send_failure(struct neat_flow_operations *flowops, int context, const unsigned char *unsent)
{
}

Called to inform the application that the returned message unsent could not be
transmitted. The failure reason as reported by the transport protocol is
returned in the standard status code, as an abstracted NEAT error code. If the
message was tagged with a context number, it is returned in context.

Only available for SCTP. Flows using TCP may use timeouts instead.

on_slowdown

Not currently implemented.

Defined as:

void
on_slowdown(struct neat_flow_operations *ops, int ecn, uint32_t rate)
{
}

Inform the application that the flow has experienced congestion and that the
sending rate should be lowered. If rate is non-zero, it is an estimate of the
new maximum sending rate. ecn is a boolean indicating whether this
notification was triggered by an ECN mark.

on_rate_hint

Not currently implemented.

Defined as:

void
on_rate_hint(struct neat_flow_operations *ops, uint32_t new_rate)
{
}

Called to inform the application that it may increase its sending rate. If
new_rate is non-zero, it is an estimate of the maximum sending rate.

Error codes

NEAT_OK

Signals that no error has occurred. Equals to 0.

NEAT_ERROR_WOULD_BLOCK

Signals that the operation could not be performed because it would block the
process. NEAT does not permit blocking operations.

NEAT_ERROR_BAD_ARGUMENT

Signals that one or more arguments given to the function was invalid or incorrect.
This also includes optional arguments.

NEAT_ERROR_IO

Signals that an internal I/O operation in NEAT has failed.

NEAT_ERROR_DNS

Signals that there was an error performing DNS resolution.

NEAT_ERROR_INTERNAL

Signals that there was an error internally in NEAT.

NEAT_ERROR_SECURITY

Signals that there was an error setting up an encrypted flow.

NEAT_ERROR_UNABLE

Signals that NEAT is not able to perform the requested operation.

NEAT_ERROR_MESSAGE_TOO_BIG

Signals that the provided buffer space is not sufficient for the received message.

NEAT_ERROR_REMOTE

Signals that there was an error on the remote endpoint.

NEAT_ERROR_OUT_OF_MEMORY

Signals that NEAT is not able to allocate enough memory to complete the requested
operation.

neat_init_ctx

Summary.

Syntax

struct neat_ctx *neat_init_ctx();

Parameters

None.

Return values

	Returns a pointer to a newly allocated and initialized NEAT context.

	Returns NULL if a context could not be allocated.

Remarks

None.

Examples

None.

See also

	neat_free_ctx

	neat_new_flow

neat_free_ctx

Summary.

Syntax

void neat_free_ctx(struct neat_ctx *ctx);

Parameters

	ctx: Pointer to the NEAT context to free.

Return values

None.

Remarks

If there are any flows still kept in this context, those will be freed and
closed as part of this operation.

Examples

None.

See also

	neat_close

	neat_init_ctx

	neat_new_flow

neat_new_flow

Allocate and initialize a new NEAT flow.

Syntax

neat_flow *neat_new_flow(struct neat_ctx *ctx);

Parameters

	ctx: Pointer to a NEAT context.

Return values

Returns a pointer to a new flow. Returns NULL on error.

Remarks

None.

Examples

None.

See also

	neat_open

	neat_close

neat_set_property

Set the properties of a NEAT flow.

Syntax

neat_error_code neat_set_property(
 struct neat_ctx *ctx,
 struct neat_flow *flow,
 const char *properties);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	properties: Pointer to a JSON-encoded string containing the flow properties.

Return values

	Returns NEAT_OK if the properties were set successfully.

	Returns NEAT_ERROR_BAD_ARGUMENT if the JSON-encoded string is malformed.

Remarks

Properties are applied when a flow connects.

Examples

None.

See also

None.

neat_get_property

Query the properties of a flow. Returns value only, not precedence.

Syntax

neat_error_code neat_get_property(struct neat_ctx *ctx,
 struct neat_flow *flow,
 const char *name,
 void *ptr,
 size_t *size);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	name: Name of the property to query.

	ptr: Pointer to a buffer where the property value may be stored.

	size: Pointer to an integer containing the size of the buffer pointed to
by ptr. Updated to contain the size of the property upon return.

Return values

	Returns NEAT_OK if the property existed and there was sufficient buffer
space available. The size parameter is updated to contain the actual size.

	Returns NEAT_ERROR_MESSAGE_TOO_BIG if there was not sufficient buffer
space. The size parameter is updated to contain the required buffer size.

	Returns NEAT_ERROR_UNABLE if the property does not exist.

Remarks

Applications may pass 0 as the size parameter to query the size of the
property.

Examples

 size_t bufsize = 0;
 char buffer = NULL;

 if (neat_get_property(ctx, flow, "transport", buffer, &bufsize) == NEAT_ERROR_MESSAGE_TOO_BIG) {
 buffer = malloc(bufsize);
 if (buffer && neat_get_property(ctx, flow, "transport", buffer, &bufsize) == NEAT_OK) {
 printf("Transport: %s\n", buffer);
 }
 if (buffer)
 free(buffer);
 } else {
 printf("\tTransport: Error: Could not find property \"transport\"\n");
 }

See also

	Properties

	neat_set_property

neat_open

Open a neat flow and connect it to a given remote name and port.

Syntax

neat_error_code neat_open(struct neat_ctx *ctx,
 struct neat_flow *flow,
 const char *name,
 uint16_t port,
 struct neat_tlv optional[],
 unsigned int opt_count);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	name: The remote name to connect to.

	port: The remote port to connect to.

	optional: An array containing optional parameters.

	opt_count: The length of the array containing optional parameters.

Optional parameters

	NEAT_TAG_STREAM_COUNT (integer): The number of streams to open, for protocols that supports multistreaming. Note that NEAT may automatically make use of multi-streaming for multiple NEAT flows between the same endpoints when this parameter is not used.

	NEAT_TAG_FLOW_GROUP (integer): The group ID that this flow belongs to. For use with
coupled congestion control.

	NEAT_TAG_PRIORITY (float): The priority of this flow relative to the other flows. Must be between 0.1 and 1.0.

	NEAT_TAG_CC_ALGORITHM (string): The congestion control algorithm to use for
this flow.

Return values

	Returns NEAT_OK if the flow opened successfully.

	Returns NEAT_ERROR_OUT_OF_MEMORY if the function was unable to allocate enough memory.

Remarks

Callbacks can be specified with neat_set_operations. The on_connected
callback will be invoked if the connection established successfully. The
on_error callback will be invoked if NEAT is unable to connect to the remote
endpoint.

Examples

neat_open(ctx, flow, "bsd10.fh-muenster.de", 80, NULL, 0);

See also

	neat_read

	Optional arguments

neat_accept

Listen to incoming connections on a given port on one or more protocols.

Syntax

neat_error_code neat_accept(struct neat_ctx *ctx,
 struct neat_flow *flow,
 uint16_t port,
 struct neat_tlv optional[],
 unsigned int opt_count);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	port: The local port to listen for incoming connections on.

	optional: An array containing optional parameters.

	opt_count: The length of the array containing optional parameters.

Optional parameters

	NEAT_TAG_STREAM_COUNT (integer): The number of streams to accept, for protocols that
supports multistreaming.

Return values

	Returns NEAT_OK if NEAT is listening for incoming connections on at least one protocol.

	Returns NEAT_ERROR_UNABLE if there is no appropriate protocol available for the flow properties that was specified.

	Returns NEAT_ERROR_BAD_ARGUMENT if flow is pointing to a flow that is already opened or listening for incoming connections.

	Returns NEAT_ERROR_BAD_ARGUMENT if NEAT_TAG_STREAM_COUNT is less than 1.

	Returns NEAT_ERROR_OUT_OF_MEMORY if the function was unable to allocate enough memory.

Remarks

Callbacks can be specified with neat_set_operations. The on_connected
callback will be invoked if the connection established successfully. The
on_error callback will be invoked if NEAT is unable to connect to the remote
endpoint.

Which protocols to listen to is determined by the flow properties.

Examples

neat_accept(ctx, flow, 8080, NULL, 0);

See also

	neat_open

	Optional arguments

neat_read

Read data from a neat flow.

Should only be called from within the on_readable
callback specified with neat_set_operations.

neat_error_code neat_read(struct neat_ctx *ctx,
 struct neat_flow *flow,
 unsigned char *buffer,
 uint32_t amount,
 uint32_t *actual_amount,
 struct neat_tlv optional[],
 unsigned int opt_count);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	buffer: Pointer to a buffer where read data may be stored.

	amount: The size of the buffer pointed to by buffer.

	actual_amount: The amount of data actually read from the transport layer.

	optional: An array containing optional parameters.

	opt_count: The length of the array containing optional parameters.

Optional parameters

This function uses optional parameters for some return values.

	NEAT_TAG_STREAM_ID (integer): The ID of the stream will be written to this
parameter.

Return values

	Returns NEAT_OK if data was successfully read from the transport layer.

	Returns NEAT_ERROR_WOULD_BLOCK if this call would block.

	Returns NEAT_ERROR_MESSAGE_TOO_BIG if the buffer is not sufficiently
large. This is only returned for protocols that are message based, such as
UDP, UDP-Lite and SCTP.

	Returns NEAT_ERROR_IO if the connection is reset.

Remarks

This function should only be called from within the on_readable callback specified with neat_set_operations, as this is the only way to guarantee that the call will not block. NEAT does not permit a blocking read operation.

The actual_amount value is set to 0 when the remote side has closed the connection.

Examples

None.

See also

	neat_write

	Optional arguments

neat_write

Write data to a neat flow. Should only be called from within the on_writable
callback specified with neat_set_operations.

neat_error_code neat_write(struct neat_ctx *ctx,
 struct neat_flow *flow,
 const unsigned char *buffer,
 uint32_t amount,
 struct neat_tlv optional[],
 unsigned int opt_count);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	buffer: Pointer to a buffer containing the data to be written.

	amount: The size of the buffer pointed to by buffer.

	optional: An array containing optional parameters.

	opt_count: The length of the array containing optional parameters.

Optional parameters

	NEAT_TAG_STREAM_ID (integer): The ID of the stream the data will be written to.

Return values

	Returns NEAT_OK if data was successfully written to the transport layer.

	Returns NEAT_ERROR_BAD_ARGUMENT if the specified stream ID is negative.

	Returns NEAT_ERROR_OUT_OF_MEMORY if NEAT is unable to allocate memory.

	Returns NEAT_ERROR_WOULD_BLOCK if this call would block.

	Returns NEAT_ERROR_IO if an I/O operation failed.

Remarks

This function should only be called from within the on_writable callback
specified with neat_set_operations, as this is the only way to guarantee
that the call will not block. NEAT does not permit a blocking write operation.

Invalid stream IDs are silently ignored.

Examples

None.

See also

	neat_read

	Optional arguments

neat_shutdown

Initiate a graceful shutdown of this flow.

	the receive buffer can still be read and on_readable gets fired like in normal operation

	receiving new data from the peer may fail

	all data in the send buffer will be transmitted

	neat_write will fail and on_writable will not be called

If the peer also has closed the connection, the on_close callback gets fired.

Syntax

neat_error_code neat_shutdown(struct neat_ctx *ctx,
 struct neat_flow *flow);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to the NEAT flow to be shut down.

Return values

	Returns NEAT_OK if the flow was shut down successfully.

	Returns NEAT_ERROR_IO if NEAT was unable to shut the flow down successfully.

Remarks

None.

Examples

None.

See also

	neat_close

neat_close

Close this flow and free all associated data. If the peer still has data to send, it cannot be received anymore after this call. Data buffered by the NEAT layer which has not given to the network layer yet will be discarded.

Syntax

neat_error_code neat_close(struct neat_ctx *ctx,
 struct neat_flow *flow);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to the NEAT flow to be closed.

Return values

	Returns NEAT_OK.

Remarks

None.

Examples

None.

See also

	neat_shutdown

neat_abort

Abort this flow and free all associated data.

Syntax

neat_error_code neat_abort(struct neat_ctx *ctx,
 struct neat_flow *flow);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to the NEAT flow to be aborted.

Return values

	Returns NEAT_OK.

Remarks

Calls neat_close internally.

Examples

None.

See also

	neat_shutdown

	neat_close

neat_set_operations

Summary.

Syntax

neat_error_code neat_set_operations(
 struct neat_ctx *ctx,
 struct neat_flow *flow,
 struct neat_flow_operations *ops);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	ops: Pointer to a struct that defines the operations/callbacks for this
flow.

Return values

	Returns NEAT_OK.

Remarks

struct neat_flow_operations is defined as follows:

struct neat_flow_operations
{
 void *userData;

 neat_error_code status;
 int stream_id;
 neat_flow_operations_fx on_connected;
 neat_flow_operations_fx on_error;
 neat_flow_operations_fx on_readable;
 neat_flow_operations_fx on_writable;
 neat_flow_operations_fx on_all_written;
 neat_flow_operations_fx on_network_status_changed;
 neat_flow_operations_fx on_aborted;
 neat_flow_operations_fx on_timeout;
 neat_flow_operations_fx on_close;
 neat_cb_send_failure_t on_send_failure;
 neat_cb_flow_slowdown_t on_slowdown;
 neat_cb_flow_rate_hint_t on_rate_hint;

 struct neat_ctx *ctx;
 struct neat_flow *flow;
};

The information in the ops struct will be copied by NEAT.

Examples

struct neat_flow_operations ops;
ops.on_readable = on_readable;
ops.on_writable = on_writable;
neat_set_operations(ctx, flow, ops);

See also

None.

neat_change_timeout

Change the timeout of the flow. Data that is sent may remain un-acked for up
to a given number of seconds before the connection is terminated and a timeout
is reported to the application.

Syntax

neat_error_code
neat_change_timeout(struct neat_ctx *ctx, struct neat_flow *flow,
 unsigned int seconds);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	seconds: The number of seconds after which un-acked data will cause a
timeout to be reported.

Return values

	Returns NEAT_OK if the timeout was successfully changed.

	Returns NEAT_ERROR_UNABLE if attempting to use this function on a system
other than Linux, or on flow that is not using TCP.

	Returns NEAT_ERROR_BAD_ARGUMENT if the timeout value is too large or if
the specified flow is not opened.

	Returns NEAT_ERROR_IO if NEAT was unable to set the timeout.

Remarks

Only available on Linux for flows using TCP.

Examples

None.

See also

None.

neat_set_primary_dest

For multihomed flows, set the primary destination address.

Syntax

neat_error_code neat_set_primary_dest(struct neat_ctx *ctx,
 struct neat_flow *flow,
 const char* address);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	address: The remote address to use as the primary destination address.

Return values

	Returns NEAT_OK if the primary destination address was set successfully.

	Returns NEAT_ERROR_UNABLE if the flow is not using SCTP as the transport protocol.

	Returns NEAT_ERROR_BAD_ARGUMENT if the provided address is not a literal IP address.

Remarks

Currently only available for SCTP.

Examples

None.

See also

None.

neat_secure_identity

Specify a certificate and key to use for secure connections.

Syntax

neat_error_code neat_secure_identity(
 struct neat_ctx *ctx,
 struct neat_flow *flow,
 const char *filename);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	filename: Path to the PEM file containing the certificate and key.

Return values

	Returns NEAT_OK.

Remarks

None.

Examples

None.

See also

None.

neat_set_checksum_coverage

Set the checksum coverage for messages sent or received on this flow.

Syntax

neat_error_code neat_set_checksum_coverage(
 struct neat_ctx *ctx,
 struct neat_flow *flow,
 unsigned int send_coverage,
 unsigned int receive_coverage);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	send_coverage: UDP-Lite: The number of bytes covered by the checksum when sending messages. UDP: Ignored.

	receive_coverage: UDP-Lite: The lowest number of bytes that must be covered by the checksum on a received message. UDP: See below.

Return values

	Returns NEAT_OK if the checksum coverage was set successfully.

	Returns NEAT_ERROR_UNABLE if the checksum coverage cannot be set, either
because the value is invalid, or because the protocol does not support it.

Remarks

Only available for flows using UDP or UDP-Lite.

Checksum verification may be enabled disabled on the receive side for flows using UDP.
Specifying a non-zero value for receive_coverage will enable it; specifying 0 will disable it.

Examples

None.

See also

None.

neat_set_qos

Set the Quality-of-Service class for this flow.

Syntax

neat_error_code neat_set_qos(struct neat_ctx *ctx,
 struct neat_flow *flow,
 uint8_t qos);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	qos: The QoS class to use for this flow.

Return values

	Returns NEAT_OK if the QoS class was set successfully.

	Returns NEAT_ERROR_UNABLE if NEAT was not able to set the requested QoS class.

Remarks

None.

Examples

None.

See also

None.

neat_get_qos

Get the Quality-of-Service class for this flow.

Syntax

neat_error_code neat_get_qos(struct neat_ctx *ctx,
 struct neat_flow *flow)

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

Return values

	Returns the used DiffServ Code Point(DSCP) used signal QoS for this flow.

Remarks

None.

Examples

None.

See also

None.

neat_set_ecn

Set the Explicit Congestion Notification value for this flow.

Syntax

neat_error_code neat_set_ecn(struct neat_ctx *ctx,
 struct neat_flow *flow,
 uint8_t ecn);

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	ecn: The ECN value to use for this flow.

Return values

	Returns NEAT_OK if the QoS class was set successfully.

	Returns NEAT_ERROR_UNABLE if NEAT was not able to set the requested ECN value.

Remarks

None.

Examples

None.

See also

None.

neat_start_event_loop

Starts the internal event loop within NEAT.

Syntax

neat_error_code neat_start_event_loop(struct neat_ctx *ctx, neat_run_mode run_mode);

Parameters

	ctx: Pointer to a NEAT context.

	run_mode: The mode of which the event loop in NEAT should execute.
May be one of either NEAT_RUN_DEFAULT, NEAT_RUN_ONCE, or NEAT_RUN_NOWAIT.

Return values

	Returns NEAT_OK if the NEAT executed with no error.

	Returns an error value if the internal event loop in NEAT was stopped due to
an error.

Remarks

This function does not return when executed with NEAT_RUN_DEFAULT.

When executed with NEAT_RUN_ONCE, NEAT will poll for I/O, and then
block unless there are pending callbacks within NEAT that are ready to be
processed. These callbacks may be internal.

When executed with NEAT_RUN_NOWAIT, NEAT will poll for I/O and execute
any pending callbacks. If there are no pending callbacks, it returns after
polling.

Examples

None.

See also

	neat_stop_event_loop

	neat_get_backend_fd

neat_stop_event_loop

Stops the internal NEAT event loop.

Syntax

int neat_stop_event_loop(struct neat_ctx *ctx);

Parameters

	ctx: Pointer to a NEAT context.

Return values

None.

Remarks

Once called, no further events will be processed and no callbacks will be called
until neat_start_event_loop is called again.

Examples

None.

See also

	neat_start_event_loop

neat_get_backend_fd

Stops the internal NEAT event loop.

Syntax

int neat_get_backend_fd(struct neat_ctx *ctx);

Parameters

	ctx: Pointer to a NEAT context.

Return values

Returns the file descriptor of the event loop used internally by NEAT. May be
polled to check for any new events.

Remarks

Note that embedding this event loop inside another event loop may not be
supported on all systems.

Examples

None.

See also

	neat_start_event_loop

neat_get_backend_timeout

Return the timeout that should be used when polling the backend file descriptor.

Syntax

int neat_get_backend_timeout(struct neat_ctx *ctx);

Parameters

	ctx: Pointer to a NEAT context.

Return values

Returns the number of milliseconds on which a poll operation may at most be
blocked on the backend file descriptor from libuv before the NEAT event loop
should be executed again to take care of timer events within NEAT.

Remarks

The client_http_run_once example demonstrates the use of this function.

Examples

None.

See also

	neat_get_backend_fd

neat_get_event_loop

Return the internal NEAT event loop pointer.

Syntax

uv_loop_t neat_get_event_loop(struct neat_ctx *ctx);

Parameters

	ctx: Pointer to a NEAT context.

Return values

Returns the the event loop used internally by NEAT.

Examples

None.

See also

	neat_start_event_loop

neat_get_stats

Return statistics from a NEAT context.

Syntax

neat_error_code neat_get_stats(
 struct neat_ctx *ctx,
 char **json_stats);

Parameters

	ctx: Pointer to a NEAT context.

	json_stats: Pointer to an address where address of the statistics may be
written.

Return values

	Returns NEAT_OK.

Remarks

The statistics is output in JSON format. The caller is responsible for freeing
the buffer containing the statistics.

Examples

None.

See also

None.

neat_getlpaddrs

Obtains the local or peer addresses of a flow.

Syntax

int neat_getlpaddrs(struct neat_ctx* ctx,
 struct neat_flow* flow,
 struct sockaddr** addrs,
 const int local)

Parameters

	ctx: Pointer to a NEAT context.

	flow: Pointer to a NEAT flow.

	addrs: Pointer to variable for storing pointer to addresses to.

	local: Set to non-zero value for obtaining local addresses, set to 0 to obtain peer addresses.

Return values

On success, neat_getlpaddrs() returns the number of addresses (local or remote). In case of having obtained at least one address, a pointer to a newly allocated memory area with the addresses will be stored into addrs. This memory area needs to be freed after usage.

Examples

struct struct sockaddr* addrs;
int n = neat_getlpaddrs(ctx, flow, &addrs, 1);
if(n > 0) {
 struct sockaddr* a = addrs;
 for(int i = 0; i < n; i++) {
 switch(a->sa_family) {
 case AF_INET:
 printf("Address %d/%d: IPv4\n", i, n);
 a = (struct sockaddr*)((long)a + (long)sizeof(sockaddr_in));
 break;
 case AF_INET6:
 printf("Address %d/%d: IPv6\n", i, n);
 a = (struct sockaddr*)((long)a + (long)sizeof(sockaddr_in6));
 default:
 assert(false);
 break;
 }
 }
 free(addrs);
}

neat_log_level

Set the log-level of the NEAT library.

Syntax

void neat_log_level(struct neat_ctx *ctx,
 uint8_t level)

Parameters

	ctx: Pointer to a NEAT context.

	level: Log level of the log entry
	NEAT_LOG_OFF

	NEAT_LOG_ERROR

	NEAT_LOG_WARNING

	NEAT_LOG_ERROR

	NEAT_LOG_DEBUG

Return values

None.

Examples

neat_log_level(ctx, NEAT_LOG_ERROR);

See also

	neat_log_file

neat_log_file

Sets the name of the log file.

Syntax

uint8_t neat_log_file(struct neat_ctx *ctx,
 const char* file_name)

Parameters

	ctx: Pointer to a NEAT context.

	file_name: Name of the NEAT logfile. If set to NULL, NEAT writes the log output to stderr.

Return values

	RETVAL_SUCCESS: success

	RETVAL_FAILURE: failure

Examples

neat_log_file(ctx, "disaster.log");

See also

	neat_log_level

Coding Style

The coding style used in NEAT is based on the
coding style used in the Linux kernel [https://www.kernel.org/doc/Documentation/CodingStyle].
There are, however, some differences between the kernel style and the style used in the NEAT project.
This document details these differences.

Strictness

This coding style serves as a guideline. Adherence is not strictly required,
but (new) code should still try to follow these guidelines as far as possible
to ensure that the code in the NEAT library has a coherent style.

Disambiguation

If some piece of code does not follow these guidelines, try to match the
surrounding code. Do not mix style changes into commits with a different purpose.

Indentation

4 spaces.

Line length

There is no strict limit on the length of a line. As a general guideline, try
to keep it below 120 characters.

Placement of braces

Generally the same as the Linux kernel style.

Braces may be used for blocks containing only one statement. Be consistent in
adjacent blocks.

Yes:

if (this) {
 do_that();
} else {
 something();
}

No:

if (this) {
 do_that();
} else
 something();

Spaces

As in the Linux kernel style.

Please avoid trailing whitespace.

Naming

Use names separated by underscores, e.g. this_is_my_variable.

Descriptive names are preferred, but short, well-known abbreviations are
acceptable.

Functions

The return type is placed on a separate line preceding the function name:

void
my_function(int parameter1, int parameter2)
{

}

Align parameters on subsequent lines with the first parameter:

void
my_other_function(int parameter1, int parameter2, ...
 int parameterN, int parameterM)
{

}

Tools

The .editorconfig file in the NEAT repository can be used by most editors
with the help of a plugin. See www.editorconfig.org [http://www.editorconfig.org/].

The uncrustify-neat.cfg file can be used by the Uncrustify tool to format
source code in accordance with this NEAT style guide. See the Uncrustify
documentation for more information.

Index

 _static/up-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to the NEAT documentation!

 		Tutorial

 		What is NEAT?

 		Contexts and flows

 		Properties

 		Asynchronous API

 		A minimal server

 		A minimal client

 		Tying the client and server together

 		Optional arguments

 		Specifying no optional arguments

 		Optional argument macros

 		Optional argument tags

 		Examples

 		Properties

 		Application property reference

 		transport

 		security

 		Inferred properties

 		interfaces

 		domain_name

 		port

 		Architecture

 		Application

 		NEAT API

 		NEAT Core

 		Connection setup in NEAT

 		Callbacks

 		Example callback flow

 		Callback reference

 		on_connected

 		on_error

 		on_readable

 		on_writable

 		on_all_written

 		on_network_status_changed

 		on_aborted

 		on_timeout

 		on_close

 		on_send_failure

 		on_slowdown

 		on_rate_hint

 		Error codes

 		NEAT_OK

 		NEAT_ERROR_WOULD_BLOCK

 		NEAT_ERROR_BAD_ARGUMENT

 		NEAT_ERROR_IO

 		NEAT_ERROR_DNS

 		NEAT_ERROR_INTERNAL

 		NEAT_ERROR_SECURITY

 		NEAT_ERROR_UNABLE

 		NEAT_ERROR_MESSAGE_TOO_BIG

 		NEAT_ERROR_REMOTE

 		NEAT_ERROR_OUT_OF_MEMORY

 		neat_init_ctx

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_free_ctx

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_new_flow

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_set_property

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_get_property

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_open

 		Syntax

 		Parameters

 		Optional parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_accept

 		Syntax

 		Parameters

 		Optional parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_read

 		Parameters

 		Optional parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_write

 		Parameters

 		Optional parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_shutdown

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_close

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_abort

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_set_operations

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_change_timeout

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_set_primary_dest

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_secure_identity

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_set_checksum_coverage

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_set_qos

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_get_qos

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_set_ecn

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_start_event_loop

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_stop_event_loop

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_get_backend_fd

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_get_backend_timeout

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_get_event_loop

 		Syntax

 		Parameters

 		Return values

 		Examples

 		See also

 		neat_get_stats

 		Syntax

 		Parameters

 		Return values

 		Remarks

 		Examples

 		See also

 		neat_getlpaddrs

 		Syntax

 		Parameters

 		Return values

 		Examples

 		neat_log_level

 		Syntax

 		Parameters

 		Return values

 		Examples

 		See also

 		neat_log_file

 		Syntax

 		Parameters

 		Return values

 		Examples

 		See also

 		Coding Style

 		Strictness

 		Disambiguation

 		Indentation

 		Line length

 		Placement of braces

 		Spaces

 		Naming

 		Functions

 		Tools

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/minus.png

_static/file.png

